- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Matalon, Moshe (4)
-
Mohan, Shikhar (2)
-
Creta, Francesco (1)
-
Fogla, Navin (1)
-
Lamioni, Rachele (1)
-
Lapenna, Pasquale Eduardo (1)
-
Patyal, Advitya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The objective of this work is to provide physical insight into the mechanisms governing flame–turbulence interactions and explore the impact of the ubiquitous Darrieus–Landau instability on the propagation. It is based on the hydrodynamic theory of premixed flames that considers the flame thickness much smaller than all other fluidynamical length scales. In this asymptotic limit, the flame is thus confined to a surface whilst the diffusion and reaction processes occurring inside the flame zone are accounted for by two parameters: the unburned-to-burned density ratio and the Markstein length. The robust model, which is free of phenomenology and turbulence modelling assumptions, makes transparent the mutual interactions between the flame and the fluid flow, and permits examining trends in flame and flow characteristics while varying the turbulence intensity and mixture properties. It is used in this study to examine the morphological changes of the flame surface that result from the intertwined effects of the turbulence and instability, as demonstrated by the local displacement and curvature of the flame front, the extent of wrinkling and folding of the flame surface, and the overall flame brush thickness. It also provides a direct evaluation of the turbulent flame speed and its dependence on the mean flame curvature and on the hydrodynamic strain that it experiences. Also discussed are the effects of the flame on the flow by examining the various mechanisms of enstrophy and scalar gradient production/destruction, the degree of anisotropy created in the burned gas, and the restructuring of the vortical motion beyond the flame.more » « less
-
Mohan, Shikhar; Matalon, Moshe (, Combustion and Flame)
-
Numerical methodology for spontaneous wrinkling of centrally ignited premixed flames – linear theoryMohan, Shikhar; Matalon, Moshe (, Combustion Theory and Modelling)null (Ed.)
-
Creta, Francesco; Lapenna, Pasquale Eduardo; Lamioni, Rachele; Fogla, Navin; Matalon, Moshe (, Combustion and Flame)
An official website of the United States government
